Preparation of optically active 3-substituted piperidines via ring expansion: synthesis of 4-amino- and 4-fluoro-1,4,5-trideoxy-1,5-imino-D-ribitol and 1,5-dideoxy-1,5-imino-d-ribitol

Dae-Kee Kim,* Ganghyeok Kim and Young-Woo Kim
Life Science Research Centre, Sunkyong Industries, 600 Jungja-Dong, Changan-Ku, Suwon-Si, Kyungki-Do 440-745, Korea

Abstract

A new method for the preparation of optically active 3-substituted 1-benzylpiperidines based on the ring expansion of the 1-benzyl-2-(methylsulfonyloxymethyl)pyrrolidine 13 with various nucleophiles has been described. Synthesis of 4-amino-1,4,5-trideoxy-1,5-imino-D-ribitol 5, 1,4,5-trideoxy-4-fluoro-1,5-imino-Dribitol 6 and 1,5-dideoxy-1,5-imino-D-ribitol 7 has also been achieved by a route which involves ring expansion of compound 13 .

Introduction

Naturally occurring and designed polyhydroxylated piperidines have over recent years become synthetic targets of great interest. ${ }^{1}$ Many of these compounds show specific and potent inhibitory activity against glycosidases due to their structural resemblance to sugars, and are therefore potentially useful for the treatment of diabetes, ${ }^{2}$ viral infections including HIV, ${ }^{26.3}$ and cancer metastasis. ${ }^{4}$ Deoxynojirimycin 1 is one of the most effective inhibitors of sweet almond β-glucosidase. ${ }^{5}$ Bernotas et al. ${ }^{19}$ have recently reported that the inhibitory effect of de(hydroxymethyl)deoxynojirimycin 2 on sweet almond β-glucosidase was comparable to that of compound $\mathbf{1}$, suggesting that the removal of the C-5 hydroxymethyl substituent of compound $\mathbf{1}$ has little effect on enzyme-substrate interaction. 1,2,5-Trideoxy-1,5-imino-d-allo-hexitol 3 which was recently isolated from Morus alba ${ }^{6}$ showed a potent inhibitory activity against rat intestinal lactase and bovine liver β-galactosidase, and the D-allo isomer of compound 1 (compound 4) retained a fair potency toward rat intestinal isomaltase and rat intestinal lactase. ${ }^{13}$ In the light of these observations we became interested in the synthesis of 1,5 -dideoxy-1,5-imino-d-ribitols 5-7 having a substituent at $\mathrm{C}-4$ that could function as a hydrogen-bond donor or acceptor with the enzyme.

While the synthesis of compound 6 from 5-amino-5-deoxy-2,3-O-isopropylidene-d-ribonolactam has been described by Di et al., ${ }^{1 h}$ their synthetic route is not applicable for the introduction of various substituents at C-4. Very recently, Cossy et al. ${ }^{7}$ have reported that treatment of 1 -alkyl-2(hydroxymethyl)pyrrolidines with trifluoroacetic anhydride (TFAA) in tetrahydrofuran (THF), followed by addition of triethylamine and sodium hydroxide, led to the formation of 1-alkyl-3-hydroxypiperidines via ring expansion with a high enantiomeric excess. This method, however, is limited to the introduction of a hydroxy group only in the piperidine ring.

Results and discussion

In this report, we describe a new method for the preparation of optically active 3 -substituted 1-benzylpiperidines based on the ring expansion of 1-benzyl-2-(methylsulfonyloxymethyl)pyrrolidine and its application for the synthesis of compounds 5-7.
First, 5-O-(tert-butyldimethylsilyl)-2,3-O-isopropylidene-Dribose 8, prepared from D-ribose in two steps according to a published procedure, ${ }^{8}$ was reduced with NaBH_{4} in EtOH at room temperature for 2 h to give the diol 9 in 93% yield, which was subsequently treated with methanesulfonyl chloride in pyridine in the presence of a catalytic amount of 4 (dimethylamino)pyridine (DMAP) at room temperature for 2 h to give the bis(methanesulfonate) 10 in 98% yield. Cyclisation of compound 10 with benzylamine (4 mol equiv.) in toluene at reflux temperature for 24 h afforded the 1 -benzylpyrrolidine 11 with inversed stereochemistry at C-2 in 85% yield. Deprotection of the tert-butyldimethylsilyl group of compound 11 with tetrabutylammonium fluoride (TBAF) in THF at room temperature for 2 h gave the 1-benzyl-2-(hydroxymethyl)pyrrolidine 12 in 93% yield. Treatment of compound 12 with methanesulfonyl chloride in pyridine under the same reaction conditions for compound $\mathbf{1 0}$ produced the 1-benzyl-2-(methylsulfonyloxymethyl)pyrrolidine 13 in 98% yield (Scheme 1).

Scheme 1 Reagents and conditions: i, $\mathrm{NaBH}_{4}, \mathrm{EtOH}$, room temp., 2 h ; ii, MsCl , pyridine, DMAP, room temp., 2 h ; iii, $\mathrm{PhCH}_{2} \mathrm{NH}_{2}(4 \mathrm{~mol}$ equiv.), toluene, reflux, 24 h ; iv, TBAF, THF, room temp., 2 h

We expected that compound 13 would form a reactive intermediate, aziridinium ion 14, in solution upon heating, which could undergo ring expansion by an $S_{\mathrm{N}} 2$-type attack of various nucleophiles at the methine carbon of the aziridinium ring to give the 3 -substituted piperidines. On the other hand, displacement of nitrogen from the methylene group of the aziridinium ring by nucleophiles would also give the 2 substituted pyrrolidines (Scheme 2). The reactions of mesyl

Table 1 Reaction of 1-benzyl-3,4-(isopropylidenedioxy)pyrrolidine-2-methyl methanesulfonate $\mathbf{1 3}$ with various nucleophiles (see Scheme 2)

Entry	R	Nucleophile (mol equiv.)	Solvent	Temp. $\left(T /{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Time } \\ & (t / \mathrm{h}) \end{aligned}$	Products (\% yield)
1	N_{3}	$\mathrm{NaN}_{3}(1.1)$	DMF	100	1	15 (63), 16 (28)
2	N_{3}	$\mathrm{LiN}_{3}(1.1)$	DMF	100	1	15 (61), 16 (29)
3	N_{3}	$\mathrm{NaN}_{3}(1.1)$	DMF	60	15	15 (64), 16 (24)
4	N_{3}	LiN_{3} (1.1)	DMF	60	15	15 (65), 16 (25)
5	F	TBAF (3.0)	THF	reflux	5	17 (54), 18 (26)
6	OH	$\mathrm{NaOH}(3.0)$	Water-1,4-dioxane	reflux	0.5	19 (55), 12 (40)
7	OAc	$\mathrm{AcONa}(2.0)$	DMF	100	0.5	20 (52), 21 (34)
8	OCHO	DMF	DMF	100	5	22 (38), 23 (50)

Scheme 2 Reagents and conditions: i, reflux; ii, Nu :
ester 13 with various nucleophiles were investigated, and the results are summarized in Table 1. Treatment of compound 13 with NaN_{3} (1.1 mol equiv.) in N, N-dimethylformamide (DMF) at $100^{\circ} \mathrm{C}$ for 1 h afforded diastereoisomerically pure compound 15 in 63% yield along with compound 16 in 28% yield (entry 1). Either replacement of NaN_{3} with LiN_{3} or changes of reaction temperature and reaction time in this reaction had little effect on the total yield and the product selectivity ($\mathbf{1 5}: \mathbf{1 6}$ ratio) (entries 2-4). Similar reactions of compound 13 with TBAF (3.0 mol equiv.) in THF, NaOH (3.0 mol equiv.) in water- $1,4-$ dioxane and AcONa (2.0 mol equiv.) in DMF, respectively, afforded diastereoisomerically pure compounds $\mathbf{1 7 , 1 9}$ and 20 in $52-55 \%$ yield along with isomers 18, 12 and 21 in $26-40 \%$ yield (entries 5-7). It is especially noteworthy that DMF itself could serve as a nucleophile in this reaction (Scheme 3). When

Scheme 3 Reagents and conditions: i, DMF, $100^{\circ} \mathrm{C}$; ii, water
compound 13 was heated in DMF at $100^{\circ} \mathrm{C}$ for 5 h , diastereoisomerically pure products $22(38 \%)$ and $23(50 \%)$ were obtained after standard work-up (entry 8). The formation of compounds 22 and 23 further indicates that this reaction must proceed via the highly reactive intermediate $\mathbf{1 4}$ since DMF is much less nucleophilic compared with other nucleophiles.

Treatment of compounds $\mathbf{1 5}, \mathbf{1 7}$ and 19 with 80% trifluoroacetic acid (TFA) at room temperature for 2 h produced 2426 in quantitative yield. As expected, the meso compound 26 was optically inactive, thus confirming that the absolute configuration at $\mathrm{C}-3$ in the piperidine ring was (R). Reductive hydrogenation of compounds $\mathbf{2 4} \mathbf{2 6}$ in the presence of 10%
$\mathrm{Pd}-\mathrm{C}$ in MeOH afforded 4 -amino-1,4,5-trideoxy-1,5-imino-Dribitol 5 (98%), 1,4,5-trideoxy-4-fluoro-1,5-imino-d-ribitol 6 (95%) and 1,5 -dideoxy-1,5-imino-d-ribitol $7(99 \%)$, respectively (Scheme 4). Compounds 6 and 7 were converted into stable,

Scheme 4 Reagents and conditions: i, TFA-water ($4: 1$), room temp., 2 h ; ii, H_{2} (3 atm), $10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}, 40^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii, $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$ (2 mol equiv.), MeOH (for $\mathbf{6} \cdot \mathrm{HCl}$ and $7 \cdot \mathrm{HCl}$)
crystalline hydrochloride salts by treatment with $1 \mathrm{~mol} \mathrm{dm}^{-3}$ HCl (2 mol equiv.) in MeOH .
Compounds 5-7 have been evaluated for their inhibitory effects on the replication of human immunodeficiency virus type 1 (HIV-1) in MT-4 cells in the National Institute of Health (Seoul, Korea) and were found to be inactive at concentrations up to $100 \mu \mathrm{~g} \mathrm{~cm}^{-3}$.
In conclusion, we have shown that the 2 -(methylsulfonyloxymethyl)pyrrolidine $\mathbf{1 3}$ undergoes ring expansion with a wide range of nucleophiles to give the various optically active 3 -substituted piperidines. Application of this ring-expansion reaction to the synthesis of compounds 5-7 starting from D-ribose as the key-step reaction has also been accomplished.

Experimental

Mps were determined on an Electrothermal F500MA digital melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 1600 FTIR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Unity 300 spectrometer. The chemical shifts are reported in parts per million (ppm) relative to internal tetramethylsilane in CDCl_{3} or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO $)$ and to sodium 4,4-dimethyl-4-silapentane-1-sulfonate (DSS) in $\mathrm{D}_{2} \mathrm{O} .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Unity 300 spectrometer at 75.4 MHz . When CDCl_{3} or $\left[{ }^{2} \mathrm{H}_{6}\right]$ DMSO was used as solvent, it served as the internal standard at $\delta_{\mathrm{C}} 77.0$ or 39.5 , respectively. When $\mathrm{D}_{2} \mathrm{O}$ was used, DSS $(\delta-1.6)$ was added as the internal standard. J-Values are given in Hz . Electron-impact mass spectra (EIMS) were obtained on a VG Quattro mass spectrometer. Optical rotations were measured on a Perkin-Elmer 241 polarimeter and $[\alpha]_{D}$-values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2}$ g^{-1}. Analytical TLC was performed on Merck silica gel 60 F 254 glass plates. Flash column chromatography was performed using Merck silica gel 60 (230-400 mesh). Elemental analyses were performed on a Carlo Erba 1106 elemental analyser.

5-O-(tert-Butyldimethylsilyl)-2,3-O-isopropylidene-D-ribitol 9
To a stirred solution of 5-O-(tert-butyldimethylsilyl)-2,3-O-isopropylidene-d-ribose $8(7.21 \mathrm{~g}, 23: 7 \mathrm{mmol})$ in $\mathrm{EtOH}\left(60 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(0.90 \mathrm{~g}, 23.8 \mathrm{mmol})$ in portions and the mixture was allowed to warm to room temp. After 2 h , $\mathrm{NH}_{4} \mathrm{Cl}(1.27 \mathrm{~g}, 23.8 \mathrm{mmol})$ was added to it and the reaction mixture was stirred for an additional 5 min . The inorganic salt was filtered off and the filtrate was evaporated to dryness to give an oily residue. The residue was passed through a short silica gel column with EtOAc as eluent to give the title compound $9(6.77 \mathrm{~g}, 93 \%)$ as a solid, $\mathrm{mp} 80.2-80.8^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 54.9; H, 9.8. $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{5}$ Si requires C, 54.85 ; $\mathrm{H}, 9.85 \%$) ; $[\alpha]_{\mathrm{D}}^{25}-2.4$ (c 2.7, MeOH); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3279$ $(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.10\left[6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.92\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right]$, $1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.09(1 \mathrm{H}, \mathrm{d}, J 4.2, \mathrm{OH})$, $3.20(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 3.66\left(1 \mathrm{H}, \mathrm{dd}, J_{5.5} 9.9, J_{5.4} 5.7,5-\mathrm{H}\right), 3.73-$ 3.93 ($3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{OH}$), 3.86 (1 H , dd, $J_{5^{\prime} .5} 9.9, J_{5^{\circ} .4}$ $\left.3.0,5^{\prime}-\mathrm{H}\right), 4.06\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 9.6, J_{3.2} 6.0,3-\mathrm{H}\right)$ and $4.36(1 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.43,-5.35,18.33,25.20,25.88,27.83$, $60.92,64.39,69.49,76.53,77.65$ and $108.48 ; m / z 291\left(\mathrm{M}^{+}-\right.$ $\mathrm{CH}_{3}, 3 \%$) and 75 (100).

5-O-(tert-Butyldimethylsilyl)-2,3-O-isopropylidene-D-ribitol 1,4-bis(methanesulfonate) 10

To a stirred solution of the diol $9(4.66 \mathrm{~g}, 15.2 \mathrm{mmol})$ and DMAP ($0.75 \mathrm{~g}, 6.1 \mathrm{mmol}$) in anhydrous pyridine ($30 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ was added $\mathrm{MsCl}\left(3.8 \mathrm{~cm}^{3}, 48.7 \mathrm{mmol}\right)$ dropwise and the mixture was allowed to warm to room temp. After 2 h , the reaction mixture was evaporated to dryness, coevaporated with toluene twice, and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed successively with water ($30 \mathrm{~cm}^{3}$), $5 \% \mathrm{HCl}$ ($30 \mathrm{~cm}^{3}$), saturated aq. $\mathrm{NaHCO}_{3}\left(30 \mathrm{~cm}^{3}\right)$ and brine $\left(30 \mathrm{~cm}^{3}\right)$. The organic phase was dried over anhydrous MgSO_{4}, filtered, and evaporated to dryness. The residue was passed through a short silica gel column with EtOAc-hexane ($1: 1$) as eluent to give the title compound $10(6.91 \mathrm{~g}, 98 \%$) as an oil (Found: C, 41.6; $\mathrm{H}, 7.35 . \mathrm{C}_{16} \mathrm{H}_{34} \mathrm{O}_{9} \mathrm{~S}_{2}$ Si requires $\mathrm{C}, 41.55 ; \mathrm{H}, 7.4 \%$); $[\alpha]_{\mathrm{D}}^{25}$ $-34.4(c \quad 1.8, \mathrm{MeOH}) ; \nu_{\max }($ neat $) / \mathrm{cm}^{-1} 1177$ and $1356\left(\mathrm{SO}_{2}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.11\left[6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.91\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.37$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.14(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.89\left(1 \mathrm{H}, \mathrm{dd}, J_{5.5^{\prime}} 12.0, J_{5.4} 4.2,5-\mathrm{H}\right), 4.07(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{5^{\prime} .5} 12.0, J_{5^{\prime} .4} 2.7,5^{\prime}-\mathrm{H}\right), 4.32-4.56\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}, 2-\right.$ and $3-\mathrm{H})$ and $4.81\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4.3} 6.9, J_{4.5} 4.2, J_{4.5} \cdot 2.7,4-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.59,-5.50,18.31,25.36,25.79,27.52,37.56$, $39.23,62.61,68.49,74.08,75.03,79.64$ and 109.42; m/z 447 $\left(\mathrm{M}^{+}-1-\mathrm{CH}_{3}, 2 \%\right)$ and 153 (100).

(2S,3R,4S)-1-Benzyl-2-(tert-butyldimethylsiloxymethyl)-3,4(isopropylidenedioxy)pyrrolidine 11

To a stirred solution of the bis(methanesulfonate) $10(5.75 \mathrm{~g}$, 12.4 mmol) in anhydrous toluene ($60 \mathrm{~cm}^{3}$) was added benzylamine ($5.4 \mathrm{~cm}^{3}, 49.7 \mathrm{mmol}$) and the mixture was heated at reflux temp. for 24 h under nitrogen. After cooling of the mixture to room temp., the precipitated salts were filtered off and the filtrate was evaporated to dryness. The residue was purified by flash column chromatography on silica gel with diethyl ether-hexane ($1: 9$) as eluent to give the title compound $11(4.00 \mathrm{~g}, 85 \%)$ as an oil (Found: C, 66.95; H, 9.2; N, 3.6. $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Si}$ requires $\mathrm{C}, 66.8 ; \mathrm{H}, 9.35 ; \mathrm{N}, 3.7 \%$); $[\alpha]_{\mathrm{D}}^{25}$ $+82.0(c 2.1, \mathrm{MeOH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.08(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.90\left[9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3}\right], 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.52(3$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.01\left(1 \mathrm{H}, \mathrm{dd}, J_{5 \alpha .5 \beta} 11.1, J_{5 \alpha, 4} 4.5,5-\mathrm{H}^{\alpha}\right), 2.40(1 \mathrm{H}$, dd, $J 5.7, J_{2.3} 4.5,2-\mathrm{H}$), $3.01\left(1 \mathrm{H}, \mathrm{d}, J_{5 \beta .5 \alpha} 11.1,5-\mathrm{H}^{\beta}\right), 3.21$ $(1 \mathrm{H}, \mathrm{d}, J 13.8, \mathrm{NCH}), 3.84(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and 5.7, CHOSi), $4.01(1 \mathrm{H}, \mathrm{dd}, J 10.5$ and 5.7 , CHOSi), $4.25(1 \mathrm{H}, \mathrm{d}, J 13.8$, $\mathrm{NCH}), 4.55\left(1 \mathrm{H}, \mathrm{dd}, J_{4.3} 6.6, J_{4.5 \alpha} 4.5,4-\mathrm{H}\right), 4.64(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3.4} 6.6, J_{3.2} 4.5,3-\mathrm{H}\right)$ and $7.19-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $-5.36,18.33,25.67,25.96,26.38,58.07,59.92,62.31,69.49$, $78.00,80.91,111.12,126.70,128.12,128.55$ and 139.04; m / z $377\left(\mathrm{M}^{+}-1,2 \%\right)$ and 91 (100).
($2 S, 3 R, 4 S$)-[1-Benzyl-3,4-(isopropylidenedioxy)pyrrolidin-2-yl]methanol 12
To a stirred solution of the pyrrolidine $11(4.55 \mathrm{~g}, 12.0 \mathrm{mmol})$ in THF ($25 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ was added TBAF $\left(18.0 \mathrm{mmol}, 18 \mathrm{~cm}^{3}\right.$ of a $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF) dropwise over a period of 5 min and the mixture was allowed to warm to room temp. After 2 h , the reaction mixture was evaporated to dryness and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was washed with water ($40 \mathrm{~cm}^{3}$), dried over anhydrous MgSO_{4}, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel with EtOAc-hexane ($1: 1$) as eluent to give the title compound $\mathbf{1 2}(2.95 \mathrm{~g}, 93 \%)$ as an oil (Found: C, 68.25; H, 8.1; N, 5.25. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires $\mathrm{C}, 68.4 ; \mathrm{H}, 8.05 ; \mathrm{N}, 5.3 \%) ;[\alpha]_{\mathrm{D}}^{25}+101.8(c \quad 1.9, \mathrm{MeOH})$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3440(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.54$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.13\left(1 \mathrm{H}, \mathrm{dd}, J_{5 \alpha .5 \mathrm{~B}} 10.8, J_{5 \alpha .4} 4.5,5-\mathrm{H}^{*}\right), 2.36(1$ $\mathrm{H}, \mathrm{td}, J 4.5$ and $4.5,2-\mathrm{H}), 3.08\left(1 \mathrm{H}, \mathrm{d}, J_{5 \beta .5 \alpha} 10.8,5-\mathrm{H}^{\beta}\right), 3.22(1$ $\mathrm{H}, \mathrm{d}, J 13.5, \mathrm{NCH}), 3.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.05(1 \mathrm{H}, \mathrm{d}, J 13.5$, $\mathrm{NCH}), 4.59\left(1 \mathrm{H}, \mathrm{dd}, J_{4.3} 6.3, J_{4.5} 4.5,4-\mathrm{H}\right), 4.71\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4}\right.$ $\left.6.3, J_{3.2} 4.5,3-\mathrm{H}\right)$ and $7.18-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $25.02,26.17,56.73,58.77,59.72,67.18,77.87,81.86,111.39$, $126.96,128.20,128.67$ and $138.05 ; m / z 264\left(\mathrm{M}^{+}+1,2 \%\right)$ and 91 (100).
($2 S, 3 R, 4 S$)-[1-Benzyl-3,4-(isopropylidenedioxy)pyrrolidin-2-yl]methyl methanesulfonate 13
Following the procedure outlined for compound 10, the 2(hydroxymethyl)pyrrolidine $12(4.00 \mathrm{~g}, 15.2 \mathrm{mmol})$ was mesylated using MsCl and DMAP in pyridine to give the title compound $13(5.07 \mathrm{~g}, 98 \%$) as an oil (Found: C, $56.05 ; \mathrm{H}, 6.9 ; \mathrm{N}$, 3.95. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 56.3 ; \mathrm{H}, 6.8 ; \mathrm{N}, 4.1 \%$); $[\alpha]_{\mathrm{D}}^{25}$ $+82.9(c 2.2, \mathrm{MeOH}) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1177$ and $1360\left(\mathrm{SO}_{2}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.18(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{5_{\alpha} .5 \mathrm{~B}} 11.1, J_{5_{\alpha, 4}} 4.5,5-\mathrm{H}^{\alpha}\right), 2.68(1 \mathrm{H}$, ddd, $J 7.5,4.8$ and $4.2,2-$ $\mathrm{H}), 3.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{CH}_{3}\right), 3.10\left(1 \mathrm{H}, \mathrm{d}, J_{5_{\mathrm{B} .5}} 11.1,5-\mathrm{H}^{\mathrm{B}}\right), 3.34$ $(1 \mathrm{H}, \mathrm{d}, J 13.8, \mathrm{NCH}), 4.00(1 \mathrm{H}, \mathrm{d}, J 13.8, \mathrm{NCH}), 4.34(1 \mathrm{H}, \mathrm{dd}$, $J 9.9$ and $\left.4.8, \mathrm{CHOSO}_{2}\right), 4.50(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and 7.5 , CHOSO_{2}), $4.62\left(1 \mathrm{H}, \mathrm{dd}, J_{4.3} 6.3, J_{4.5 \mathrm{~s}} 4.5,4-\mathrm{H}\right), 4.70(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3.4} 6.3, J_{3.2} 4.2,3-\mathrm{H}\right)$ and $7.20-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $25.38,26.25,37.03,57.74,59.55,65.95,68.38,77.96,80.19$, $111.64,127.13,128.33,128.40$ and 137.90; $m / z 341\left(\mathrm{M}^{+}, 0.5 \%\right)$ and 91 (100).

($3 R, 4 R, 5 S$)-3-Azido-1-benzyl-4,5-(isopropylidenedioxy)piperidine 15 and ($2 S, 3 R, 4 S$)-2-azidomethyl-1-benzyl-3,4-(isopropylidenedioxy)pyrrolidine 16

A mixture of the 2-(methylsulfonyloxymethyl)pyrrolidine $\mathbf{1 3}$ $(1.00 \mathrm{~g}, 2.9 \mathrm{mmol})$ and $\mathrm{NaN}_{3}(0.21 \mathrm{~g}, 3.2 \mathrm{mmol})$ in anhydrous DMF ($15 \mathrm{~cm}^{3}$) was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h under nitrogen. The resulting suspension was cooled to room temp. and evaporated to dryness under reduced pressure. The residue was treated with water ($25 \mathrm{~cm}^{3}$) and the aqueous phase was extracted with $\operatorname{EtOAc}\left(3 \times 40 \mathrm{~cm}^{3}\right)$. The organic phase was washed with brine ($40 \mathrm{~cm}^{3}$), dried over anhydrous MgSO_{4}, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel with EtOAc-hexane ($1: 5$) as eluent to give the two isomeric title compounds 15 and 16.
Compound 15 was obtained as an oil ($0.53 \mathrm{~g}, 63 \%$) (Found: C, 62.3; $\mathrm{H}, 7.05 ; \mathrm{N}, 19.2$. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 62.5 ; \mathrm{H}, 7.0 ; \mathrm{N}$, $19.45 \%) ;[\alpha]_{\mathrm{D}}^{25}+22.2(c \quad 2.4, \mathrm{MeOH}) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 2098$ $\left(\mathrm{N}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.12(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{6 \alpha .6 \beta} 11.1, J_{6 \alpha .5} 9.6,6-\mathrm{H}^{\alpha}\right), 2.34\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \alpha .2 \beta} 10.8\right.$, $\left.J_{2 \alpha .3} 5.4,2-\mathrm{H}^{\alpha}\right), 2.81\left(1 \mathrm{H}\right.$, ddd, $J_{2 \beta .2 \alpha} 10.8, J_{2 \beta .3} 5.1,2-\mathrm{H}^{\beta}$), 2.88 (1 H , ddd, $\left.J_{6 \beta .6 \alpha} 11.1, J_{6 \beta .5} 7.8, J_{6 \beta .2 \beta} 1.5,6-\mathrm{H}^{\beta}\right), 3.57(2 \mathrm{H}, \mathrm{s}$, NCH_{2}), $3.64\left(1 \mathrm{H}, \mathrm{ddd}, J_{3.2 \alpha} 5.4, J_{3.2 \beta} 5.1, J_{3.4} 3.0,3-\mathrm{H}\right), 4.21(1$ $\left.\mathrm{H}, \mathrm{ddd}, J_{5.6 \alpha} 9.6, J_{5.6 \beta} 7.8, J_{5.4} 4.5,5-\mathrm{H}\right), 4.38\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5} 4.5\right.$, $\left.J_{4.3} 3.0,4-\mathrm{H}\right)$ and $7.20-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 26.41$, $28.09,51.09,54.98,56.61,62.03,72.77,73.55,109.73,127.31$, 128.32, 128.80 and $137.49 ; m / z 273\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 2 \%\right)$ and 91 (100).

Compound 16 was obtained as an oil $(0.24 \mathrm{~g}, 28 \%)$ (Found: C, $62.25 ; \mathrm{H}, 7.1 ; \mathrm{N}, 19.3 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 62.5 ; \mathrm{H}, 7.0 ; \mathrm{N}$, $19.45 \%) ;[\alpha]_{\mathrm{D}}^{25}+110.3$ (c 2.3, MeOH); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2101$ $\left(\mathrm{N}_{3}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.13(1$ H , dd, $\left.J_{5 \alpha .5 \beta} 11.1, J_{5 \alpha .4} 4.5,5-\mathrm{H}^{\alpha}\right), 2.41(1 \mathrm{H}, \mathrm{ddd}, J 8.7,4.5$ and $4.5,2-\mathrm{H}), 3.08\left(1 \mathrm{H}, \mathrm{d}, J_{5 \beta .5 \alpha} 11.1,5-\mathrm{H}^{\beta}\right), 3.28(1 \mathrm{H}, \mathrm{d}, J 13.5$, $\mathrm{NCH}), 3.43\left(1 \mathrm{H}, \mathrm{dd}, J 12.0\right.$ and $\left.4.5, \mathrm{CHN}_{3}\right), 3.68(1 \mathrm{H}, \mathrm{dd}$, $J 12.0$ and $\left.8.7, \mathrm{CHN}_{3}\right), 3.98(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{NCH}), 4.61(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{4.3} 6.3, J_{4.5 \alpha} 4.5,4-\mathrm{H}\right), 4.68\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 6.3, J_{3.2} 4.5,3-\mathrm{H}\right)$ and $7.20-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 25.47,26.25,49.68,57.53$, $59.64,66.80,77.82,80.46,111.56,127.04,128.29,128.36$ and 138.14; m/z $273\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 1.5 \%\right)$ and 91 (100).

(3R,4S,5S)-1-Benzyl-3-fluoro-4,5-(isopropylidenedioxy)piperidine 17 and ($2 R, 3 R, 4 S$)-1-benzyl-2-fluoromethyl-3,4(isopropylidenedioxy)pyrrolidine 18

To a stirred solution of compound $13(1.00 \mathrm{~g}, 2.9 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$ was added TBAF ($8.7 \mathrm{mmol}, 8.7 \mathrm{~cm}^{3}$ of $1.0 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF) and the mixture was heated at reflux temp. for 5 h . The reaction mixture was cooled to room temp. and evaporated to dryness. The residue was treated with water (20 cm^{3}) and the aqueous phase was extracted with $\mathrm{EtOAc}(3 \times 30$ $\left.\mathrm{cm}^{3}\right)$. The organic phase was washed with brine $\left(30 \mathrm{~cm}^{3}\right)$, dried over anhydrous MgSO_{4}, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel with EtOAc-hexane $(1: 8)$ as eluent to give the two isomeric title compounds 17 and 18 .

Compound 17 was obtained as an oil ($0.42 \mathrm{~g}, 54 \%$) (Found: C, 67.75; $\mathrm{H}, 7.7 ; \mathrm{N}, 5.15 . \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{FNO}_{2}$ requires $\mathrm{C}, 67.9 ; \mathrm{H}, 7.6 ; \mathrm{N}$, 5.3%); $[\alpha]_{\mathrm{D}}^{25}-38.8(c 1.6, \mathrm{MeOH}) ; v_{\max }($ (neat $) / \mathrm{cm}^{-1} 1064(\mathrm{C}-\mathrm{F})$; $\delta_{H}\left(\mathrm{CDCl}_{3}\right) 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.26(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{6 \alpha .6 \beta} 11.4, J_{6 \alpha .5} 8.7,6-\mathrm{H}^{\alpha}\right), 2.51\left(1 \mathrm{H}\right.$, ddd, $J_{2 \alpha .2 \beta} 10.5, J_{2 \alpha .3} 8.7$, $\left.2-\mathrm{H}^{\alpha}\right), 2.79-2.92\left(2 \mathrm{H}, \mathrm{m}, 2\right.$ - and $\left.6-\mathrm{H}^{\mathrm{B}}\right), 3.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right)$, $4.28\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5.66} 8.0, J_{5.4} 5.0,5-\mathrm{H}\right), 4.42\left(1 \mathrm{H}\right.$, ddd, $J_{4.5} 5.0$, $\left.J_{4.3} 3.9,4-\mathrm{H}\right), 4.77\left(1 \mathrm{H}\right.$, dddd, $J_{3 . \mathrm{F}} 45.9, J_{3.2 \alpha} 8.7, J_{3.2 \beta} 6.6, J_{3.4}$ 3.9, 3-H) and 7.20-7.37 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 26.40,27.87$, 51.33 (d, ${ }^{2} J_{2 . \mathrm{F}} 25.6, \mathrm{C}-2$), 54.66 (C-6), 61.92 (d, ${ }^{4} J 1.2, \mathrm{CH}_{2} \mathrm{Ph}$), 72.95 (d, $\left.{ }^{2} J_{4 . \mathrm{F}} 14.9, \mathrm{C}-4\right), 73.23$ (d, ${ }^{3} J_{5 . \mathrm{F}} 5.2, \mathrm{C}-5$), $86.60\left(\mathrm{~d},{ }^{1} J_{3 . \mathrm{F}}\right.$ 181.0, C-3), 110.29, 127.32, 128.33, 128.86 and 137.48; m/z 265 $\left(\mathrm{M}^{+}, 3.5 \%\right), 232$ (37) and 91 (100).

Compound 18 was obtained as an oil $(0.20 \mathrm{~g}, 26 \%)$ (Found: C, 67.65; H, 7.8; N, 5.2. $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{FNO}_{2}$ requires C, 67.9; H, 7.6; N, $5.3 \%) ;[\alpha]_{\mathrm{D}}^{25}+75.8(c 2.7, \mathrm{MeOH}) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1099(\mathrm{C}-\mathrm{F})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.12(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{5 \alpha .5 \beta} 11.4, J_{5 \alpha .4} 4.5,5-\mathrm{H}^{*}\right), 2.65(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.07(1 \mathrm{H}, \mathrm{d}$, $\left.J_{5_{\beta .5 \alpha}} 11.4,5-\mathrm{H}^{\beta}\right), 3.34(1 \mathrm{H}, \mathrm{d}, J 13.8, \mathrm{NCH}), 4.11(1 \mathrm{H}, \mathrm{d}$, $J 13.8, \mathrm{NCH}), 4.60\left(1 \mathrm{H}, \mathrm{dd}, J_{4.3} 6.3, J_{4.5} 4.5,4-\mathrm{H}\right), 4.61(1 \mathrm{H}, \mathrm{m}$, CHF), $4.68\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 6.3, J_{3.2} 4.5,3-\mathrm{H}\right), 4.82(1 \mathrm{H}, \mathrm{m}, \mathrm{CHF})$ and 7.20-7.38 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 25.44,26.25,57.76(\mathrm{~d}$, $\left.{ }^{4} J_{5 . \mathrm{F}} 2.5, \mathrm{C}-5\right), 59.30\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 66.68\left(\mathrm{~d},{ }^{2} J_{2 . \mathrm{F}} 20.7, \mathrm{C}-2\right), 78.19$ (C-4), 80.53 ($\mathrm{d},{ }^{3} J_{3 . \mathrm{F}} 6.7, \mathrm{C}-3$), $83.66\left(\mathrm{~d},{ }^{1} J 163.5, \mathrm{CH}_{2} \mathrm{~F}\right.$), 111.62, 126.95, 128.22, 128.55 and $138.21 ; m / z 265\left(\mathrm{M}^{+}, 22 \%\right)$ and 91 (100).

(3R,4R,5S)-1-Benzyl-4,5-(isopropylidenedioxy)piperidin-3-ol 19 and ($2 S, 3 R, 4 S$)-[1-benzyl-3,4-(isopropylidenedioxy)pyrrolidin-2-yl]methanol 12

A stirred solution of compound $13(1.00 \mathrm{~g}, 2.9 \mathrm{mmol})$ in $1,4-$ dioxane $\left(10 \mathrm{~cm}^{3}\right)$ was treated with aq. $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}(9$ cm^{3}) and the mixture was heated at reflux temp. for 30 min . After cooling to room temp., the reaction mixture was evaporated to dryness. The residue was treated with water (20 $\left.\mathrm{cm}^{3}\right)$ and the aqueous phase was extracted with EtOAc (3×30 cm^{3}). The organic phase was washed with brine ($30 \mathrm{~cm}^{3}$), dried over anhydrous MgSO_{4}, filtered and evaporated to dryness. The residue was purified by flash column chromatography on silica gel with EtOAc-hexane (1:1) as eluent to give the two isomeric title compounds 19 and 12.

Compound 19 was obtained as an oil ($0.42 \mathrm{~g}, 55 \%$), which solidified upon storage in a refrigerator for a few days, mp 67.2-
$68.8^{\circ} \mathrm{C}$ (Found: C, 68.15; $\mathrm{H}, 8.2$; N, 5.1. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires C, $68.4 ; \mathrm{H}, 8.05 ; \mathrm{N}, 5.3 \%)$; $[\alpha]_{\mathrm{D}}^{25}-31.5$ (c $\left.1.5, \mathrm{MeOH}\right)$; $\nu_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{1} 3456(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.55$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.36\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \alpha, 2 \beta} 10.8, J_{2 \alpha, 3} 8.4,2-\mathrm{H}^{\chi}\right), 2.44$ (2 $\mathrm{H}, \mathrm{dd}, J_{6 \alpha .6 \beta} 11.7, J_{6 \alpha, 5} 5.7,6-\mathrm{H}^{\alpha}$ and OH$), 2.60\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \beta .2 \alpha}\right.$ $\left.10.8, J_{2 \text { в. } 3} 3.6,2-\mathrm{H}^{\beta}\right), 2.73\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \beta .6 \alpha} 11.7, J_{6 \beta .5} 4.7,6-\mathrm{H}^{\beta}\right)$, $3.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 3.88\left(1 \mathrm{H}\right.$, ddd, $J_{3.2 \alpha} 8.4, J_{3.4} 3.9, J_{3.2 \mathrm{~B}} 3.6$, $3-\mathrm{H}), 4.18-4.28(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H})$ and $7.20-7.37(5 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 26.28,27.46,54.69,55.02,62.03,66.62,72.88$, $74.60,109.31,127.24,128.29,128.92$ and $137.54 ; m / z 263\left(\mathrm{M}^{+}\right.$, 12%) and 91 (100).
Compound 12 was obtained as an oil ($0.31 \mathrm{~g}, 40 \%$), which was identical with that mentioned above in all aspects.
(3 R,4S,5S)-1-Benzyl-4,5-(isopropylidenedioxy)piperidin-3-yl acetate 20 and ($2 S, 3 R, 4 S$)-[1-benzyl-3,4-(isopropylidene-dioxy)pyrrolidin-2-yl]methyl acetate 21
A mixture of compound $13(1.00 \mathrm{~g}, 2.9 \mathrm{mmol})$ and $\mathrm{AcONa}(0.48$ $\mathrm{g}, 5.8 \mathrm{mmol})$ in anhydrous DMF ($15 \mathrm{~cm}^{3}$) was heated at $100^{\circ} \mathrm{C}$ for 30 min under nitrogen. The reaction mixture was cooled to room temp. and evaporated to dryness under reduced pressure. The residue was treated with water $\left(20 \mathrm{~cm}^{3}\right)$ and the aqueous phase was extracted with EtOAc $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The organic phase was washed with brine ($30 \mathrm{~cm}^{3}$), dried over anhydrous MgSO_{4}, filtered, and evaporated to dryness. The residue was purified by flash column chromatography on silica gel with diethyl ether-hexane ($1: 2$) as eluent to give the two isomeric title compounds 20 and 21.
Compound 20 was obtained as an oil ($0.46 \mathrm{~g}, 52 \%$) (Found: C, 66.9; H, 7.8; N, 4.45. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires C, 66.85; H, 7.6; N , $4.6 \%) ;[\alpha]_{\mathrm{D}}^{25}-9.8(c 0.7, \mathrm{MeOH}) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1746(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.10(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Ac}), 2.14\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \alpha .6 \beta} 10.5, J_{6 \alpha, 5} 4.2,6-\mathrm{H}^{\alpha}\right), 2.32(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{2 \alpha, 2 \beta} 9.8, J_{2 \alpha, 3} 5.4,2-\mathrm{H}^{\alpha}\right), 2.76\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \beta .2 \alpha} 9.8, J_{2 \beta .3} 5.4,2-\right.$ $\left.\mathrm{H}^{\mathrm{\beta}}\right), 2.86\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \text { в. } 6 \alpha} 10.5, J_{6 \beta .5} 6.9,6-\mathrm{H}^{\mathrm{\beta}}\right), 3.56(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2}\right), 4.25\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5.6 \beta} 6.9, J_{5.4} 4.5, J_{5.64} 4.2,5-\mathrm{H}\right), 4.41(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{4.5} 4.5, J_{4.3} 4.2,4-\mathrm{H}\right), 5.13\left(1 \mathrm{H}, \mathrm{ddd}, J_{3.2 \alpha}=J_{3.2 \mathrm{~B}}=\right.$ $\left.5.4, J_{3.4} 4.2,3-\mathrm{H}\right)$ and $7.20-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $21.15,26.47,28.26,50.80,54.89,62.00,68.56,72.77,73.09$, 109.87, 127.25, 128.31, 128.79, 137.64 and 170.32; m/z 306 $\left(\mathrm{M}^{+}+1,2.5 \%\right)$ and 91 (100).

Compound 21 was obtained as an oil ($0.30 \mathrm{~g}, 34 \%$) (Found: $\mathrm{C}, 66.7 ; \mathrm{H}, 7.65 ; \mathrm{N}, 4.5 . \mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires $\mathrm{C}, 66.85 ; \mathrm{H}, 7.6$; $\mathrm{N}, 4.6 \%) ;[\alpha]_{\mathrm{D}}^{25}+92.7(c 1.4, \mathrm{MeOH}) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1741$ $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.07(3$ $\mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.07\left(1 \mathrm{H}, \mathrm{dd}, J_{5_{\alpha .5 \beta}} 11.1, J_{5 \alpha .4} 4.2,5-\mathrm{H}^{\alpha}\right), 2.48(1 \mathrm{H}$, $\mathrm{td}, J 5.6,4.2,2-\mathrm{H}), 3.05\left(1 \mathrm{H}, \mathrm{d}, J_{5 \beta .5 \alpha} 11.1,5-\mathrm{H}^{\beta}\right), 3.25(1 \mathrm{H}, \mathrm{d}, J$ $13.5, \mathrm{NCH}), 4.11(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{NCH}), 4.38(2 \mathrm{H}, \mathrm{d}, J 6.0$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.60\left(1 \mathrm{H}, \mathrm{dd}, J_{4.3} 6.6, J_{4.5 \alpha} 4.2,4-\mathrm{H}\right), 4.66\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4}\right.$ $\left.6.6, J_{3.2} 4.2,3-\mathrm{H}\right)$ and $7.20-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ $21.00,25.63,26.31,57.61,59.51,62.76,66.01,78.01,80.57$, $111.55,126.92,128.21,128.32,138.26$ and $170.81 ; \mathrm{m} / \mathrm{z} 290\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{CH}_{3}, 3 \%\right)$, 91 (92) and 43 (100).
($3 R, 4 S, 5 S$)-1-Benzyl-4,5-isopropylidenedioxy)piperidin-3-yl formate 22 and ($2 S, 3 R, 4 S$)-[1-benzyl-3,4-(isopropylidenedioxy)-pyrrolidin-2-yl]methyl formate 23
A solution of compound $13(1.00 \mathrm{~g}, 2.9 \mathrm{mmol})$ in anhydrous DMF ($15 \mathrm{~cm}^{3}$) was heated at $100^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was diluted with water $\left(15 \mathrm{~cm}^{3}\right)$ and evaporated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel with EtOAc-hexane ($1: 6$) as eluent to give the two isomeric title compounds 22 and 23.
Compound $\mathbf{2 2}$ was obtained as an oil ($0.32 \mathrm{~g}, 38 \%$) (Found: C, 65.7; H, 7.25; $\mathrm{N}, 4.7 . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires $\mathrm{C}, 65.95 ; \mathrm{H}, 7.25 ; \mathrm{N}$, $4.8 \%) ;[\alpha]_{\mathrm{D}}^{25}-10.0\left(c 0.2, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1727(\mathrm{CO})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.15(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{6 \alpha, 6 \beta} 10.8, J_{6 \alpha, 5} 4.2,6-\mathrm{H}^{\alpha}\right), 2.37\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \alpha, 2 \beta} 9.9, J_{2 \alpha, 3} 5.3,2-\right.$ $\left.\mathrm{H}^{\mathrm{\alpha}}\right), 2.81\left(1 \mathrm{H}, \mathrm{dd}, J_{2_{\text {B. } 2 \alpha}} 9.9, J_{2 \text { B. } 3} 5.3,2-\mathrm{H}^{\mathrm{\beta}}\right), 2.88(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{6 \beta .6 \alpha} 10.8, J_{6 \text { в. }} 6.9,6-\mathrm{H}^{\beta}\right), 3.56(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{NCH}), 3.58(1$
$\mathrm{H}, \mathrm{d}, J 12.0, \mathrm{NCH}), 4.27\left(1 \mathrm{H}, \mathrm{ddd}, J_{5.6 \mathrm{~B}} 6.9, J_{5.4} 4.5, J_{5.6 x} 4.2\right.$, $5-\mathrm{H}), 4.42\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5} 4.5, J_{4.3} 4.2,4-\mathrm{H}\right), 5.27$ (1 H , ddd, $\left.J_{3.2 \alpha}=J_{3.2 \beta}=5.3, J_{3.4} 4.2,3-\mathrm{H}\right), 7.20-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.08(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 26.44,28.14,50.69,54.78$, $61.93,68.11,72.48,73.10,109.99,127.30,128.25,128.76,137.43$ and 159.96; m/z $291\left(\mathrm{M}^{+}, 4 \%\right)$ and 91 (100).

Compound 23 was obtained as an oil ($0.43 \mathrm{~g}, 50 \%$) (Found: C, $65.85 ; \mathrm{H}, 7.35 ; \mathrm{N}, 4.65 . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{4}$ requires C, $65.95 ; \mathrm{H}, 7.25$; $\mathrm{N}, 4.8 \%) ;[\alpha]_{\mathrm{D}}^{25}+112.2\left(c 1.6, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1727$ $(\mathrm{CO}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.54\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.12(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{5 \alpha, 5 \beta} 11.1, J_{5 \alpha, 4} 4.2,5-\mathrm{H}^{\alpha}\right), 2.54(1 \mathrm{H}$, ddd, $J 6.0,5.4$ and $4.2,2-\mathrm{H}), 3.08\left(1 \mathrm{H}, \mathrm{d}, J_{5.5 \alpha} 11.1,5-\mathrm{H}^{\beta}\right), 3.28(1 \mathrm{H}, \mathrm{d}, J 13.5$, $\mathrm{NCH}), 4.07(1 \mathrm{H}, \mathrm{d}, J 13.5, \mathrm{NCH}), 4.44(1 \mathrm{H}, \mathrm{dd}, J 11.1$ and 6.0 , $\mathrm{CHO}), 4.48(1 \mathrm{H}, \mathrm{dd}, J 11.1$ and $5.4, \mathrm{CHO}), 4.62\left(1 \mathrm{H}, \mathrm{dd}, J_{4.3}\right.$ $\left.6.3, J_{4.5 x} 4.2,4-\mathrm{H}\right), 4.68\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 6.3, J_{3.2} 4.2,3-\mathrm{H}\right), 7.20-$ $7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $8.08(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right) 25.53$, $26.26,57.64,59.47,62.18,65.76,78.02,80.44,111.64,127.02$, 128.26, 128.44, 138.05 and $160.74 ; \mathrm{m} / \mathrm{z} 292\left(\mathrm{M}^{+}+1,1.5 \%\right)$ and 91 (100).

General procedure for the preparation of the 1-benzylpiperidines 24-26

A solution of 1-benzyl-4,5-(isopropylidenedioxy)piperidine (2.5 $\mathrm{mmol})$ in 80% TFA ($10 \mathrm{~cm}^{3}$) was stirred at room temp. for 2 h . The reaction mixture was diluted with $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$, neutalized with Amberlite ${ }^{18}$ IRA-400 $\left(\mathrm{OH}^{-}\right)$ion-exchange resin, and filtered. The filtrate was evaporated to dryness and the residue was purified by flash column chromatography on silica gel with $\mathrm{MeOH}-\mathrm{CHCl}_{3}(1: 19$ for 24 and $25 ; 1: 4$ for 26) as eluent.
($3 S, 4 R, 5 R$)-5-Azido-1-benzylpiperidine-3,4-diol 24. Following the general procedure, the 1 -benzyl-4,5-(isopropylidenedioxy)piperidine 15 gave the title compound 24 in quantitative yield as an oil (Found: C, 57.9; H, 6.7; N, 22.4. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 58.05 ; \mathrm{H}, 6.5 ; \mathrm{N}, 22.55 \%$); $[\alpha]_{\mathrm{D}}^{20}+25.0$ (c 2.2 , $\mathrm{MeOH}) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2099\left(\mathrm{~N}_{3}\right)$ and $3404(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(\left[^{2} \mathrm{H}_{6}\right]\right.$ DMSO) $2.16\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \alpha .2 \beta}=J_{2 \alpha .3}=10.2,2-\mathrm{H}^{\alpha}\right), 2.36(1 \mathrm{H}$, dd, $\left.J_{6 \alpha .5} 10.8, J_{6 \alpha .6 \beta} 10.2,6-\mathrm{H}^{\alpha}\right), 2.46\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \beta .2 \alpha} 10.2\right.$, $\left.J_{2 \beta .3} 4.5,2-\mathrm{H}^{\beta}\right), 2.59\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \beta .6 \alpha} 10.2, J_{6 \beta .5} 4.5,6-\mathrm{H}^{\beta}\right), 3.25$ (1 H , ddd, $\left.J_{5.6 \alpha} 10.8, J_{5.6 \beta} 4.5, J_{5.4} 2.1,5-\mathrm{H}\right), 3.47(1 \mathrm{H}$, dddd, $\left.J_{3.2 \alpha} 10.2, J_{3.0 \mathrm{oH}} 6.3, J_{3.2 \alpha} 4.5, J_{3.4} 2.1,3-\mathrm{H}\right), 3.52(1 \mathrm{H}, \mathrm{d}, J$ 13.2, NCH), $3.57(1 \mathrm{H}, \mathrm{d}, J 13.2, \mathrm{NCH}), 3.91\left(1 \mathrm{H}, \mathrm{ddd}, J_{4 . \mathrm{OH}}\right.$ $\left.4.2, J_{4.3} 2.1, J_{4.5} 2.1,4-\mathrm{H}\right), 4.67(1 \mathrm{H}, \mathrm{d}, J 6.3,3-\mathrm{OH}), 5.01$ (1 $\mathrm{H}, \mathrm{d}, J 4.2,4-\mathrm{OH})$ and $7.20-7.38$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 49.55,52.75,58.18,61.54,67.91,69.71$, 127.55, 128.64, 129.42 and 137.93; $m / z 249\left(\mathrm{M}^{+}+1,3 \%\right)$ and 91 (100).
($\mathbf{3 S}, 4 S, 5 R$)-1-Benzyl-5-fluoropiperidin-3,4-diol 25. Following the general procedure, the 1-benzyl-4,5-(isopropylidenedioxy)piperidine 17 gave the title compound 25 in quantitative yield as an oil (Found: C, 63.8; H, 7.1; N, 6.1. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{FNO}_{2}$ requires $\mathrm{C}, 64.0 ; \mathrm{H}, 7.15 ; \mathrm{N}, 6.2 \%$); $[\alpha]_{\mathrm{D}}^{20}-11.4$ (c 2.5 , $\mathrm{MeOH}) ; v_{\max }($ neat $\left.) / \mathrm{cm}^{-1} 3422(\mathrm{OH}) ; \delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 2.15(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{6 \alpha .6 \beta} 10.2, J_{6 \alpha .5} 9.6,6-\mathrm{H}^{\alpha}\right), 2.34-2.47\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\alpha}\right.$ overlapped with $\left.6 \cdot \mathrm{H}^{\beta}\right), 2.42\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \beta .6 \alpha} 10.2, J_{6 \beta .5} 3.6,6-\right.$ $\left.\mathrm{H}^{\mathrm{\beta}}\right), 2.62\left(1 \mathrm{H}\right.$, ddd, $J_{2 \beta .3} 4.8,2-\mathrm{H}^{\text {® }}$), $3.47\left(1 \mathrm{H}\right.$, dddd, $J_{5.4}$ $\left.10.5, J_{5.6 \alpha} 9.6, J_{5 . \text { он }} 7.2, J_{5.6 \text { в }} 3.6,5-\mathrm{H}\right), 3.53(1 \mathrm{H}, \mathrm{d}, J 10.5$, NCH), $3.56(1 \mathrm{H}, \mathrm{d}, J 10.5, \mathrm{NCH}), 3.93\left(1 \mathrm{H}\right.$, dddd, $J_{4.5} 10.5$, $\left.J_{4 . \text { он }} 3.9, J_{4.3} 2.4,4-\mathrm{H}\right), 4.52\left(1 \mathrm{H}\right.$, dddd, $J_{3 . \mathrm{F}} 47.1, J_{3.2 \alpha} 9.9$, $\left.J_{3.2 \beta} 4.8, J_{3.4} 2.4,3-\mathrm{H}\right), 4.54(1 \mathrm{H}, \mathrm{d}, J 7.2,3-\mathrm{OH}), 4.83(1 \mathrm{H}$, d, $J 3.9,4-\mathrm{OH})$ and $7.20-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ 49.69 ($\mathrm{d},{ }^{2} J_{2 . \mathrm{F}} 26.2, \mathrm{C}-2$), $52.56,61.07,66.91$ ($\mathrm{d},{ }^{3} J_{5 . \mathrm{F}} 8.6, \mathrm{C}-$ 5), 68.47 (d, ${ }^{2} J_{4 . \mathrm{F}} 15.2, \mathrm{C}-4$), 88.78 (d, ${ }^{1} J_{3 . \mathrm{F}} 177.0, \mathrm{C}-3$), 127.03, 128.17, 128.87 and $137.88 ; m / z 225\left(\mathrm{M}^{+}, 12 \%\right)$ and 91 (100).
[$(3 R)$-($3 \alpha, 4 \alpha, 5 \alpha)]$-1-Benzylpiperidine-3,4,5-triol 26. Following the general procedure, the 1 -benzyl-4,5-(isopropylidenedioxy)piperidine 19 gave the title compound 26 in quantitative yield as crystals, mp $133.8-134.8^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 64.7; $\mathrm{H}, 7.75 ; \mathrm{N}, 6.0 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires C, 64.55; $\mathrm{H}, 7.65$;
$\mathrm{N}, 6.25 \%) ;[\alpha]_{\mathrm{D}}^{20} \quad 0.0 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300$ and $3373(\mathrm{OH})$; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) \quad 2.14\left(2 \mathrm{H}, \quad \mathrm{dd}, \quad J_{6 \alpha .6 \beta}=J_{2 \alpha, 2 \beta}=10.2\right.$, $J_{6 \alpha, 5}=J_{2 \alpha, 3}=9.6,2-$ and $\left.6-\mathrm{H}^{\alpha}\right), 2.39\left(2 \mathrm{H}, \mathrm{dd}, J_{6 \text { в. } 6 \alpha}=\right.$ $J_{2 \beta .2 \alpha}=10.2, \quad J_{6 \beta .5}=J_{2 \beta .3}=4.2,2-$ and $\left.6-\mathrm{H}^{\mathrm{B}}\right), 3.40-3.55$ $(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 5-\mathrm{H}), 3.48\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2}\right), 4.30(1 \mathrm{H}, \mathrm{d}, J 3.6$, $4-\mathrm{OH}), 4.41(2 \mathrm{H}, \mathrm{d}, J 6.6,3-\mathrm{and} 5-\mathrm{OH})$ and $7.20-7.38$ (5 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 53.33,61.53,67.97,70.56,126.93$, 128.17, 128.90 and $138.40 ; \mathrm{m} / \mathrm{z} 223\left(\mathrm{M}^{+}, 12 \%\right)$ and 91 (100).

General procedure for the preparation of the piperidines 5-7

A solution of 1-benzylpiperidine (1.0 mmol) in MeOH (20 cm^{3}) was hydrogenated in the presence of $10 \% \mathrm{Pd}-\mathrm{C}(0.05 \mathrm{~g})$ at 3 atm at $40^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was filtered through a pad of Celite and evaporated to dryness to give the analytically pure product. For $6 \cdot \mathrm{HCl}$ and $7 \cdot \mathrm{HCl}$, the product was dissolved in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ and to the solution was added $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}(2.0 \mathrm{mmol})$. The mixture was evaporated to dryness and the resulting solid was crystallized from a suitable solvent.
($\mathbf{3 S , 4 R , 5 R}$)-5-Aminopiperidine-3,4-diol (4-amino-1,4,5-trideoxy-1,5-imino-d-ribitol) 5. Following the general procedure, the 1-benzylpiperidine $\mathbf{2 4}$ gave the title compound $\mathbf{5}$ in 98% yield as crystals, mp $171.6-172.4^{\circ} \mathrm{C}$ (decomp.; from EtOAc-EtOH) (Found: C, 45.20; H, 9.0; N, 21.1. $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 45.45; $\mathrm{H}, 9.15 ; \mathrm{N}, 21.2 \%) ;[\alpha]_{\mathrm{D}}^{20}+4.5(c 1.0, \mathrm{MeOH}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3046, 3272 and $3364\left(\mathrm{OH}\right.$ and $\left.\mathrm{NH}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 2.43(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{6 \alpha, 6 \beta} 12.6, J_{6 \alpha .5} 11.1,6-\mathrm{H}^{\alpha}\right), 2.58\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \alpha .2 \beta} 13.2, J_{2 \alpha .3} 9.9\right.$, $\left.2-\mathrm{H}^{\alpha}\right), 2.69\left(1 \mathrm{H}, \mathrm{dd}, J_{6 \beta .6 \alpha} 12.6, J_{6 \beta .5} 4.5,6-\mathrm{H}^{\beta}\right), 2.69-2.82(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}$, overlapped with $2-$ and $\left.6-\mathrm{H}^{\beta}\right), 2.76\left(1 \mathrm{H}, \mathrm{dd}, J_{2 \beta .2 \alpha} 13.2\right.$, $J_{2 \text { B. }} 4.5,2-\mathrm{H}^{\beta}$), $3.66\left(1 \mathrm{H}\right.$, ddd, $J_{3.2 \alpha} 9.9, J_{3.2 \beta} 4.5,3-\mathrm{H}$) and 3.93 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) 45.17,46.38,51.23,69.93$ and 72.29 ; $m / z 133\left(\mathrm{M}^{+}+1,19 \%\right)$ and $72(100)$.
(3S,4S,5R)-5-Fluoropiperidine-3,4-diol (1,4,5-trideoxy-4-
fluoro-1,5-imino-D-ribitol) hydrochloride $\mathbf{6} \cdot \mathbf{H C l}$. Following the general procedure, the 1-benzylpiperidine 25 gave the title compound $6 \cdot \mathrm{HCl}$ in 95% yield as crystals, $\mathrm{mp}>250^{\circ} \mathrm{C}$ (decomp.; from DMF-EtOH) $\left\{\right.$ lit., ${ }^{1 h}>250^{\circ} \mathrm{C}$ (decomp.) $\}$; $[\alpha]_{\mathrm{D}}^{20}+2.0$ (c 1.0 , water) $\left\{\right.$ lit., ${ }^{1 h}[\alpha]_{\mathrm{D}}^{25}+1.9$ (c 0.21 , water) $\}$; $\delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) 46.00\left(\mathrm{~d},{ }^{2} J_{6, \mathrm{~F}} 22.8, \mathrm{C}-6\right), 48.18(\mathrm{C}-2), 65.82\left(\mathrm{~d},{ }^{3} J_{3, \mathrm{~F}}\right.$ $1.5, \mathrm{C}-3$), 67.38 ($\mathrm{d},{ }^{2} J_{4 . \mathrm{F}} 16.4, \mathrm{C}-4$) and 87.86 ($\mathrm{d},{ }^{1} J_{5 . \mathrm{F}} 179.4$, C-5).
[(3R)-(3 $\mathbf{3}, 4 \alpha, 5 \alpha)]$-Piperidine-3,4,5-triol (1,5-dideoxy-1,5-imino-D-ribitol) hydrochloride $\mathbf{7 . H C l}$. Following the general procedure, the 1-benzylpiperidine $\mathbf{2 6}$ gave the title compound $7 \cdot \mathrm{HCl}$ in 99% yield as crystals, mp $161.0-163.0^{\circ} \mathrm{C}$ (decomp.; from DMF-EtOH) (Found: C, 35.2; H, 7.2; N, 7.95. $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{ClNO}_{3}$ requires $\mathrm{C}, 35.4 ; \mathrm{H}, 7.15 ; \mathrm{N}, 8.25 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3300(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 3.16-3.32(4 \mathrm{H}, \mathrm{m}, 2-$ and $\left.6-\mathrm{H}_{2}\right)$ and $4.02-4.14(3 \mathrm{H}, \mathrm{m}, 3-, 4-$ and $5-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right)$ 45.18, 66.42 and $69.21 ; m / z 133\left(\mathrm{M}^{+}, 18 \%\right)$ and 43 (100).

References

1 (a) G. C. Look, C. H. Fotsch and C.-H. Wong, Acc. Chem. Res., 1993, 26, 182; (b) T. Hudlicky, J. Rouden, H. Luna and S. Allen, J. Am. Chem. Soc., 1994, 116, 5099; (c) T. Tschamber, F. Backenstrass, M. Neuburger, M. Zehnder and J. Streith, Tetrahedron, 1994, 50, 1135; (d) F. Backenstrass, J. Strcith and T. Tschamber, Tetruhedron Lett., 1990, 31, 2139; (e) C. R. Johnson, A. Golebiowski, H. Sundram, M. W. Miller and R. L. Dwaihy, Tetrahedron Lett., 1995, 36, 653; (f) B. B. Shankar, M. P. Kirkup, S. W. McCombie and A. K. Ganguly, Tetrahedron Lett., 1993, 34, 7171; (g) R. C. Bernotas, G. Papandreou, J. Urbach and B. Ganem, Tetrahedron Lett., 1990, 31, 3393; (h) J. Di, B. Rajanikanth and W. A. Szarek, J. Chem. Soc., Perkin Trans. 1, 1992, 2151; (i) N. Asano, K. Oseki, H. Kizu and K. Matsui, J. Med. Chem., 1994, 37, 3701.

2 (a) K. M. Robinson, H. E. Begovic, B. L. Rhinehart, E. W. Heineke, J.-B. Ducep, P. R. Kastner, F. N. Marshall and C. Danzin, Diabetes, 1991, 40, 825; (b) A. B. Hughes and A. J. Rudge, Nat. Prod. Rep., 1994, 11, 135.
3 I. M. Jones and G. S. Jacob, Nature, 1991, 352, 198; D. A. Winker and G. J. Holan, J. Med. Chem., 1989, 32, 2084.

4 M. J. Humphries, K. Matsumoto, S. L. White and K. Olden, Cancer Res., 1986, 46, 5215.
5 M. P. Dale, H. E. Ensley, K. Kern, K. A. R. Sastry and L. D. Byers, Biochemistry, 1985, 24, 3530.
6 N. Asano, K. Oseki, E. Tomioka, H. Kizu and K. Matsui, Carbohydr. Res., 1994, 259, 243.
7 J. Cossy, C. Dumas, P. Michel and D. G. Pardo, Tetrahedron Lett., 1995, 36, 549.

8 R. R. Schmidt, J. Karg and W. Guilliard, Chem. Ber., 1977, 110, 2433; P. D. Kane and J. Mann, J. Chem. Soc., Perkin Trans. I, 1984, 657.

Paper 5/05965H
Received 8th September 1995
Accepted 17th November 1995

